Approximation in Trigonometric Lipschitz Spaces
Сохранить в:
| Авторы: | , , , |
|---|---|
| Формат: | artículo original |
| Статус: | Versión publicada |
| Дата публикации: | 2021 |
| Описание: | The approximation by generalized trigonometric polynomials for Lipschitz defined functions in certain groups depends on some properties of the group defined metric. Metrics which allow this approximation are called Lipschitz compatible. In this work we give for certain class of groups, conditions under which Lipschitz compatible metrics are boundedly equivalent, i.e., they generate the same Lipschitz space. In particular, for the multiplicative group of modulus one complex numbers the conditions are necessary and sufficient for the compatible Lipschitz metrics to be boundedly equivalent. |
| Страна: | Portal de Revistas UCR |
| Институт: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Язык: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/45440 |
| Online-ссылка: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/45440 |
| Ключевое слово: | Lipschitz spaces invariant metrics trigonometric polynomials topological groups dual space espacios de Lipschitz métricas invariantes polinomios trigonométricos grupos topológicos espacio dual |