Using Google Trends Data to forecast homicide mortality: the case of Mexico

 

Gardado en:
Detalles Bibliográficos
Autores: Vazquez, Eduardo, Silva, Eliud
Formato: artículo original
Estado:Versión publicada
Data de Publicación:2025
Descripción:Introduction: In Mexico a major public safety concern is how to predict and reduce homicides to implement effective mitigation policies. Methodology: This study aims to compare traditional forecasting models —ARIMA and Vector Autoregressive (VAR)—with and without Google Trends data, the research explores ways to enhance prediction accuracy. Using homicide records from the National Institute of Statistics and Geography (INEGI, for its Spanish acronym) and Google Trends data from 2006–2020, the study highlights the integration of real-time online data to complement official statistics. Results: Considering a forecast horizon of 15 months up to March 2020, results show that VAR models with Google Trends provide the best performance for both female and male homicides. Conclusions: The findings underscore the potential of integrating digital data sources into traditional models to provide more accurate and timely tools for public safety planning and intervention.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Idioma:Inglés
OAI Identifier:oai:portal.revistas.ucr.ac.cr:article/2568
Acceso en liña:https://revistas.ucr.ac.cr/index.php/rpsm/article/view/2568
Palabra crave:Homicides
forecasting
Google Trends
VAR model
Homicidios
pronóstico
modelo VAR