Using Google Trends Data to forecast homicide mortality: the case of Mexico
Gardado en:
| Autores: | , |
|---|---|
| Formato: | artículo original |
| Estado: | Versión publicada |
| Data de Publicación: | 2025 |
| Descripción: | Introduction: In Mexico a major public safety concern is how to predict and reduce homicides to implement effective mitigation policies. Methodology: This study aims to compare traditional forecasting models —ARIMA and Vector Autoregressive (VAR)—with and without Google Trends data, the research explores ways to enhance prediction accuracy. Using homicide records from the National Institute of Statistics and Geography (INEGI, for its Spanish acronym) and Google Trends data from 2006–2020, the study highlights the integration of real-time online data to complement official statistics. Results: Considering a forecast horizon of 15 months up to March 2020, results show that VAR models with Google Trends provide the best performance for both female and male homicides. Conclusions: The findings underscore the potential of integrating digital data sources into traditional models to provide more accurate and timely tools for public safety planning and intervention. |
| País: | Portal de Revistas UCR |
| Institución: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Idioma: | Inglés |
| OAI Identifier: | oai:portal.revistas.ucr.ac.cr:article/2568 |
| Acceso en liña: | https://revistas.ucr.ac.cr/index.php/rpsm/article/view/2568 |
| Palabra crave: | Homicides forecasting Google Trends VAR model Homicidios pronóstico modelo VAR |