FPS performance profiling for multiple computational architectures using the DCP dehazing algorithm
Guardado en:
Autores: | , |
---|---|
Formato: | artículo original |
Fecha de Publicación: | 2022 |
Descripción: | In this document we present a benchmark to evaluate the performance of different platforms in the execution of a dehazing algorithm based on the Dark Channel Prior (DCP) [1]. The parameter used for the evaluation was the number of frames per second (FPS) that the device was able to process. This tool allows to determine which architectures can execute the algorithm in real time. The testing environment was executing in four platforms, a Google Pixel 3a, a Raspberry Pi 3B+, a GPU by NVIDIA, and an Intel x86 processor. The following software development kits (SDK’s) where used for each of the platforms: Android NDK, Yocto Poky, CUDA, and the GCC toolchain. The tool allowed us to collect, for each platform, the FPS for different image sizes, these results allow the selection of an ideal architecture depending on a specific application (e.g., low power, HPC). The testing environment was executing in four platforms, a Google Pixel 3a, a Raspberry Pi 3B+, a GPU by NVIDIA, and an Intel x86 processor. The following software development kits (SDK’s) where used for each of the platforms: Android NDK, Yocto Poky, CUDA, and the GCC toolchain. The tool allowed us to collect, for each platform, the FPS for different image sizes, these results allow the selection of an ideal architecture depending on a specific application (e.g., low power, HPC). |
País: | RepositorioTEC |
Institución: | Instituto Tecnológico de Costa Rica |
Repositorio: | RepositorioTEC |
Lenguaje: | Español |
OAI Identifier: | oai:repositoriotec.tec.ac.cr:2238/14098 |
Acceso en línea: | https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/5718 https://hdl.handle.net/2238/14098 |
Palabra clave: | FPS Benchmark Image processing Real-time processing Embedded Systems Computer architecture Image Dehazing Image Restoration Benchmark de FPS Procesamiento de imágenes Procesamiento en tiempo real Sistemas empotrados Arquitectura de computadores Reducción de neblina Restauración de Imagen |